Fast Multi-objective Optimisation of a Micro-fluidic Device by Using Graphics Accelerators

نویسندگان

  • Christos Tsotskas
  • Timoleon Kipouros
  • Anthony Mark Savill
چکیده

The development of technology that uses widely available and inexpensive hardware for realworld cases is presented in this work. This is part of a long-term approach to minimise the impact of aviation on the environment and aims to enable the users both from industrial and academic background to design more optimal mixing devices. Here, a Multi-Objective Tabu Search is combined with a flow solver based on the Lattice Boltzmann Method (LBM) so as to optimise and simulate the shape and the flow of a micro-reactor, respectively. Several geometrical arrangements of a micro-reactor are proposed so as to increase the mixing capability of the device while minimising the pressure losses and to investigate related flow features. The computational engineering design process is accelerated by harnessing the high computational power of Graphic Processor Units (GPUs). The ultimate aim is to effectively harvest and harness computing cycles while performing design optimisation studies that can deliver higher quality designs of improved performance within shorter time intervals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array

In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...

متن کامل

X iv : p hy si cs / 0 41 12 11 v 1 2 3 N ov 2 00 4 A Coupled Cavity Micro Fluidic Dye Ring Laser

We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography i...

متن کامل

N ov 2 00 4 A Coupled Cavity Micro Fluidic Dye Ring Laser

We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography i...

متن کامل

Optimal Design of a Microfabricated Diffusion-based Extraction Device

The miniaturization of micro-fluidic chemical assays of fluid mixtures containing particles such as biological molecules and cells is a technically and commercially significant objective. Successful automation of chemical analysis of small samples requires seamless integration of several subsystems that perform tasks routinely carried out by a skilled technician. In this paper is presented a me...

متن کامل

GPGPU Accelerated Sparse Linear Solver for Fast Simulation of On-Chip Coupled Problems

Continued device scaling into the nanometer region has given rise to new effects that previously had negligible impact but now present greater challenges to designing successful mixed-signal silicon. Design efforts are further exacerbated by unprecedented computational resource requirements for accurate design simulation and verification. This paper presents a general purpose graphic processing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015